

Lean principles

Lean principles can be applied to:

- Sample collection
- Sample transport
- Booking-in of samples
- Sample storage
- Scheduling
- Sample splitting into aliquots for each individual test

Not covered in this presentation as focus is on GC but

A modern open plan laboratory where all staff can see everything coming can 'boost productivity' too as it creates a 'push' environment

© Anthias 2005-17 www.anthias.co.uk 5 of 26

Existing method tweaks

- No hardware changes
- · No changes in consumables used
- Examination of the 'electronic' method
 - Instrument acquisition
 - Data analysis
 - Reporting
- Usually:
 - Lots of small tweaks (optimisation of parameters) to have an effect
 - Rarely one tweak has a large effect but can occur!
- Must:
 - Always consider effect on other parameters & workflow parts
 - Ensure method is robust above all else
- Some are technique, instrument set-up and manufacturerspecific

© Anthias 2005-17 www.anthias.co.uk 7 of 26

Cycle time

'Time taken from injection to ready for injection' includes:

- Analysis time
 - sample injection, separation & detection
- · Post-run steps
 - back-flushing, bakeout
- Cool down time
 - location of GC (air flow), lab ambient temp, initial/final oven temp, efficiency of programmable inlet & oven cooling
- Next sample preparation for injection
 - After GC run has finished (e.g. liquid autosamplers)
 - Before previous GC run has completed (e.g. HS, TD, etc.)
- Equilibration times
 - Long enough to ensure instrument stability, but minimal
- Allow margin of error, e.g. cycle time slightly longer
 - Instrument waits rather than prepared sample
 - Summer vs. winter cool-down times
 - All instruments running vs. 1 instrument in use

© Anthias 2005-17

www.anthias.co.uk

- E.g. liquid autosampler, HS, SPME, P&T, TD
- Using full functionality & optimising current autosampler method saves analyst's time & reduces cycle time
- Compare sample prep. time with GC run time
 - Which is the bottleneck?
 - Revisit method parameter optimisation for bottleneck
 - Ensure method remains robust!
- Ensure next sample is prepared ready to inject when GC comes ready
 - Can be as simple as using a stopwatch to check cycle times then input into autosampler method
 - For short GC runs, can double productivity!

© Anthias 2005-17

www.anthias.co.uk

9 of 26

Separation

Anthias Consulting Ltd Bridging the Gap

- Column flow rates
 - Constant flow vs. constant pressure for later-eluting peaks
 - Consider higher flow rates, dependent on application
 - Ensure flow rate is no lower than most efficient flow for gas type & column
 - Higher CF can be more effective at reducing runs times than raising oven temperatures!

Flow Pressure Oven

© Anthias 2005-17

www.anthias.co.uk

Separation

- Oven temperature program
 - Initial oven temp.
 - Matched to solvent bp for splitless/LVI
 - High as possible for split injection
 - Initial hold time: matched to time taken to transfer analytes to column
 - Ramp rates: matched to separation then compare faster rates
 - Final oven temp.
 - Elute analytes on temp. ramp (use full temp range of column), no final hold time
 - Check inlet temp: only transfer analytes to column, not high MW matrix that needs 'burning off'
 - End run asap, after all compounds transferred to column have eluted

© Anthias 2005-17

www.anthias.co.uk

11 of 26

Analyte detection

- Check number of data points across the peak
- Too high acquisition rate =
 - Lose sensitivity
 - Peaks not smooth
 - Too low acquisition rate =
 - 'Join the dot' appearance
 - · Difficult to differentiate co-eluting peaks
- Both cause
 - Difficulties for data analysis software
 - Leading to higher analyst interactions
- Remember, higher quality data
 - = easier & faster data analysis

© Anthias 2005-17

www.anthias.co.uk

Data analysis

- · Different analytes can have different peak shapes
 - Gaussian or tailing
 - Sharp or broad
- Some analytes suffer more/less from matrix effects
 - Retention time shifts
 - Peak shape
 - Broadening effects over time
- Therefore, standard DA method parameters not best for all analytes!
 - Start with values best for majority of peaks
 - Keep note of those requiring manual intervention
 - Optimise parameters for those with recurring problems

© Anthias 2005-17 www.anthias.co.uk 13 of 26

Data analysis

- Develop method step-by-step, fully test each step before fully automating
 - Add as much info. into sequence as possible to be used by DA method & reporting
 - Add as much info. into DA method as possible, to be used by reporting
- Remember
 - Data analysis method will take months to fully optimise
 - Need to test with many samples of differing matrices & amounts
 - Fully optimised DA parameters = possibility of robust DA automation = confidence in results with minimal false positives & negatives = HUGE time savings for routine analyses

© Anthias 2005-17

www.anthias.co.uk

Moderate method changes • No hardware changes • Include changes to consumables including - Column - Inlet liner - Carrier gas type • Generally, to shorten runtimes - Narrower & shorter columns - Split rather than splitless injections - More efficient carrier gas

Injection & transfer to column Anthias Consulting Ltd

- Needs to be robust
- Needs to be fast
- Match liner to:
 - Injection technique for better transfer
 - Vapour volume (50-75% of liner volume)
 - Avoids problems, like exceeding liner volume
 - Smaller volumes = shorter splitless times
 - RoT: 2x flushes of liner volume
 - Shorter splitless time = shorter oven initial hold time = shorter run time
 - But, ensure splitless time is long enough = robust method

© Anthias 2005-17

www.anthias.co.uk

17 of 26

He

Separation on the column Anthias Consulting Ltd

- Hydrogen faster & more efficient than helium
 - As good as, if not better separations in shorter time
 - Can cause lower sensitivity & not suitable for some applications!
- Stationary phase
 - Investigate other phases: some analytes elute at lower temperatures = less cool-down time
- Stationary phase thickness
 - Just thick enough!
 - Excess stationary phase = longer to elute & higher bleed = more frequent maintenance

© Anthias 2005-17

www.anthias.co.uk

Separation on the column Anthias Consulting Ltd Bridging the Gap Column length Shorter column = shorter run time Half the length ≠ half number of theoretical plates, therefore suitable for many applications! Column i.d. Narrower i.d. = more efficient separations Can use higher flow rates = shorter run time Usually shorter in length too = shorter run time Caution: lower capacity = use split injection saves time too (transfer time & initial oven temperature) Doesn't mean a jump to a 0.1 mm i.d., try 0.15 or 0.18 mm!

www.anthias.co.uk

19 of 26

© Anthias 2005-17

Major method changes

- Introduce a different way of analysing the sample
- Must be:
 - Robust
 - Fit-for-purpose
- Can include instrument hardware changes
 - Autosampler: robotic
 - Inlet: PTV/MMI
 - Column oven: faster heating/cooling like LTM
 - Detector: more selective detectors, e.g. MS/MS

© Anthias 2005-17 www.anthias.co.uk 21 of 26

Offline/online sample prep Anthias Consulting Ltd

- Introduce a faster, more effective sample extraction method
 - Automation of existing manual method before the GC
 - E.g. SPE system
 - Miniaturisation & automation on the GC
 - E.g. LLE, derivatisation
 - Automation of certain steps through the GC, e.g.
 - Solvent evaporation through PTV/MMI
 - Addition of IS

© Anthias 2005-17

Injection & transfer to column Anthias Consulting Ltd

Bridging the Gap

- Large volume injection = automated method for evaporating excess solvent & concentrating sample
- Can be used to:
 - Replace manual solvent blow-down step
 - Enable miniaturised automated sample prep method to be injected
 - Hyphenating with other sample prep techniques
- All of which can increase productivity

© Anthias 2005-17 www.anthias.co.uk 23 of 26

Summary

- Boosting productivity can be taken:
 - As small method tweaks to ensure the current method is as efficient as possible
 - More investment can be made to fully optimise the consumables used in the method to boost productivity
 - An overhaul of the method, with potentially new hardware
- The best productivity boost is:
 - A robust analysis method producing high quality data
 - Less re-runs, less troubleshooting
 - A fully optimised data analysis method using all tools within the software, with the least analyst interaction to produce excellent results

© Anthias 2005-17 www.anthias.co.uk 24 of 26

Final word

With dirty samples the matrix has to be dealt with somewhere!

- Through:
 - Sample preparation (automated or manual = time & consumables)
 - Sample introduction (stays in liner = maintenance)
 - Backflushing from column (= time & potential column damage)
 - Selective detection (but still dirties the detector = maintenance throughout system)
- Where is the fastest, cheapest & most efficient place to remove it?
- Which produces the most robust method?
 - Giving better LODs, precision & bias?
- Which gives a robust method & runs on minimum routine maintenance protocols?
 - Maintenance = instrument down time

All has an effect on productivity – a matter of determining which has the least effect for the application & the laboratory!

© Anthias 2005-17 www.anthias.co.uk 25 of 26

