

Current Detector Options in GC – making the right choice!

Diane Turner, Anthias Consulting

Selecting the right detector

- Qualitative analysis
- Quantitative analysis
- Identify unknowns
- What is the nature of the sample?
 - Analytes: Many/few
 - Volatile/semi-volatile/involatile
 - High/low concentration
 - Chemistry: elemental composition, functional groups, bonds, polarity
 - Matrix: Little/high loading
- How to handle matrix interferences?
 - Sample preparation, offline/online
 - Positive discrimination using the inlet
 - Selectivity of column, even using GC+GC or GCxGC
 - Selectivity of the detector

GC Instrumentation

Detector qualities

- Selecting your ideal detector, it will:
 - 1) Have adequate sensitivity for target analytes
 - 2) Give similar response to all analytes, or selective to one or more classes of analytes
 - 3) Be non-destructive of sample
 - 4) Have a dynamic range, preferably with linear response to target analytes over several orders magnitude enough for application
 - 5) Have a quick response time, independent of flow rate (particularly important for narrow peaks)
 - 6) Give good stability & reproducibility in location
 - 7) Be easy to use, set-up & maintain
- No detector exhibits all of these qualities choose one that is best for the application

Detector response

- Dynamic range = measure of increase in response with increasing amount of an analyte, without saturating the detector
- Linear dynamic range = response increases proportionally with increased concentration
- Non-linear = still usable so long as response is reproducible

Concentration

Detector Characteristics

Concentration Sensitive

- Usually non-destructive
- Responds to concentration of analyte within detector, mass per unit volume, e.g. g/mL
- e.g TCD, ECD, PID

Mass Flow Sensitive

- Usually destructive
- Responds to amount of analyte within detector, mass per unit time (g/s) irrespective of carrier gas volume, e.g. number of functional groups or carbons within molecule
- e.g. FID, PFPD, NPD, ELCD, AED, MSD

Detector types

Universal:

- See most organic compounds
- E.g. FID, TCD, HID
- E.g. MS in scan mode

Selective:

- Reduced matrix interferences
- Easier quantitation
- Can get better MDLs
- E.g. ECD, PFPD, NPD, SCD, ELCD, NCD, PID, IRD
- E.g. MSD in SIM or MS/MS mode

Matrix & analyte dependent

Sig. $1inC: \HPCHEM\1\DATA\TMX1\011F0105$ 110000 100000 90000 80000 70000 6000050000 4000030000 20000 10000

ELCD

Selective for aromatics

10

Still sees matrix interferences

20

Time (min.)

30

Difficult to ID target PCBs

- Selective for halogens: PCBs
- Can't see matrix for this application

40

Detector types

- Flame Ionisation Detector (FID)
- Electron Capture Detector (ECD)
- Thermal Conductivity Detector (TCD)
- Pulsed Flame Photometric Detector (PFPD)
- Nitrogen Phosphorus Detector (NPD)
- Barrier Discharge Ionisation Detector (BDID)
- Photo Ionisation Detector (PID)
- Helium Ionisation Detector (HID) & Discharge Ionisation Detector (DID)
- Atomic Emission Detector (AED)
- Sulphur Chemiluminescence Detector (SCD)
- Nitrogen Chemiluminescence Detector (NCD)
- Electrolytic Conductivity Detector (ELCD)
- Thermal Energy Analyser (TEA)
- Vacuum UltraViolet (VUV)
- Infra-Red Detector (IRD)
- Mass Selective Detector (MSD)

IYL 2015

INTERNATIONAL YEAR OF LIGHT 2015 International Year of Light & Light-Based Technologies

- Global initiative adopted by UN
- Raise awareness of how optical technologies promote sustainable development & provide solutions to worldwide challenges
- www.light2015.org

Focus on light-based GC detectors:

- PFPD
- PID
- VUV
- IRD
- SCD & NCD
- TEA
- AED

The PFPD

- Developed & patented by Dr Aviv Amirav at University of Tel Aviv
- Selective to S & P, minor applications in C & N, plus 24 other elements
- Sensitivity: <1pg S/s, <100fg P/s
- Range: S 10⁶ (linear 10³), P 10⁵ (linear 10³), equimolar
- Principles:
 - Combustible mixture of H₂ & air fills detector from bottom to
 - Gas mixture is ignited in the cap
 - Propagation flame travels from cap towards head of GC column
 - As compounds elute from column inside quartz combustor they are combusted in flame
 - Excited species are formed, e.g. HPO*, S₂* and fluoresce
 - Flame is extinguished when reaches bottom of detector
 - Excited species continue to fluoresce for up to 25 ms
 - Cycle is repeated 3-4 times/sec

- 1) Filling
- 2) Ignition
- 3) Propagation
- 4) Combusion
- 5) Extinction

Courtesy of OI Analytical

The PFPD

 Each fluorescing species has a different lifetime within the flame

the flame

Hydrocarbon: 1-3ms

Phosphorus: 4-15ms

Sulfur: 6-25 ms

 Individual HPO*, S₂*, HNO* heteroatom flame emissions are separated in time & have different luminescence

Using both time & wave-length improves selectivity

spectra

The PFPD

- Light from species pass through the filter & into PMT
- Light strikes a photosensitive surface knocking loose an electron → amplified
- Signal converted to digital by ADC
- Time filter is applied, only desired portion of emission is integrated e.g. for S from 6-25 ms,
- Can produce 2 time filters
- Measured values converted to analog
- Two simultaneous chromatograms produced

1–3 msec

Petrochemical application

Simultaneous S & HC: 302 ppm total sulfur in diesel fuel

- A. Methyl mercaptan
- B. Thiophene
- C. C1-Thiophenes
- D. Tetrahydrothiophene
- E. C2-Thiophenes
- F. C3-Thiophenes
- G. Benzothiophene
- H. C1-Benzothiophenes
- C2-Benzothiophenes
- J. C3-Benzothiophenes
- K. Dibenzothiophene
- L. C1-Dibenzothiophenes
- M. C2-Dibenzothiophenes
- N. C3-Dibenzothiophenes
- O. Alkyl sulfides & substituted thiophenes

1 μL injection, split 100:1, Quantified by ASTM RR gasoline #10 as an external calibration standard

1166 ooff 42

12

Environmental application Anthias Consulting Ltd

Bridging the Gap

www.anthias.co.uk

	<u>Compound</u>	<u>ppb</u>			
1	Methamidophos	100			
2	Acephate	60			
3	Dimethoate	60			
4	Diazinon	60			
5	Chlorpyrifos-Me	50			
6	Chlorpyrifos	50			
7	Disulfoton sulfone	50			
8	Ethion	60			
9	Phosmet	100			
10	Azinphos-Me	150			
Thiabendazole ~ 1 ppm					
• Compounds 1-10					

- Compounds 1-10 contain both P & S
- Thiabendazole contains only S

Food analysis application

Standard Mix 307 compounds 10 ppb

Ginger extract + 307 compounds 10 ppb

Standard Mix 307 compounds 10 ppb

Ginger extract + 307 compounds 10 ppb

Courtesy of Kinryo Electric, Japan

The PID

- Non-destructive: use in tandem with FID/ELCD/XSD
- Selectively detects aromatic & olefinic HCs
- Sensitivity: 25pg aromatics, 50pg olefins
- Range: Linear 10⁵⁻⁷
- Principles:
 - Sample stream flows through detector's reaction chamber & is continuously irradiated with high energy UV light
 - Compounds having a lower ionisation potential (<10 eV) are ionised: R + photon → R⁺ + e⁻
 - lons formed are collected in electrical field, producing current proportional to compound concentration
 - Ion current is simplified & output by GC electrometer

The PID

 Solvent venting sweeps away undesirable sample solvent, controlled through GC

- Sensitivity: Robust, fast response, high accuracy & sensitivity
- Max. temp. 250°C (volatiles only)

- Non-destructive: sample streams flows from side port into jet reactor of 2nd universal or detector of different selectivity
- · 2 simultaneous chromatograms produced

The PID

Selectivity: wavelength of UV light depends on lamp gas type
 & is chosen for target analytes

Lamp energy	8.3 eV	9.5 eV	10.0 eV	11.7 eV
Lamp type	10.0	Xenon	Krypton	Argon
Analytes	PAH & Mercaptans	Benzene & aromatics >C6	HCs, ammonia, ethanol, acetone, amines >C4	Alkanes >C2, acetylene, formaldehyde, methanol
Selectivity	Highest selectivity	\rightarrow	\rightarrow	Lowest selectivity
Relative sensitivity	0.1	1	10-20	1.0

- Components detected are those with ionisation potential below emitted energy level
- E.g. with 10.0 eV lamp, compounds with IE <10.0 eV = large response, compounds with IE > 10 .0eV = little/no response

Tandem PID/ELCD

USEPA 502.2 VOC method on 105m column

VPH application

VOC by P&T

The VUV

- Non-destructive
- Universal: detects gaseous molecules except N₂, H₂, He
- Spectra enable ability to:
 - Perform deconvolution of co-eluting analytes
 - Get reduced matrix interferences
 - Differentiate isomers
- Sensitivity: mass on column, 15 pg benzene to 246 pg water
- Spectral resolution: <1 nm
- Range: 10⁴ (linear)
- If absorption cross section known for analyte, number molecules present in flow cell can be determined without calibration (in absence of chemical interferents)
- No vacuum needed
- Vacuum UltraViolet absorption region 120-240 nm

What is VUV?

"The excitation energies associated with electrons forming most single bonds are sufficiently high that absorption by them is restricted to the so-called vacuum ultraviolet region (λ<185nm), where components in the atmosphere also absorb strongly."

Principals of Instrumental Analysis, by Douglass Skoog, Sixth Edition, 2006

VUV region

VUV Principles

VUV Data

- Data produced:
 - Total absorbance chromatogram
 - Extracted absorbance chromatograms (spectral filters)
- Absorption spectra:
 - Can be deconvoluted
 - Are library searchable

VUV Isomer identification Anthias Consulting

Bridging the Gap

GC-VUV of FAMEs

Saturated FAMEs

VUV spectra of saturated FAMEs normalized to their absorbance at 155nm

Comparison C18 FAMEs

VUV spectra of saturated FAMEs normalized to their absorbance at 155nm

Classifying FAMEs using Relative Peak Areas

The IRD

- A tandem technique GC-IRD
- Vapour phase infrared spectrophotometric detection
- Molecules absorb infrared energy, frequencies are characteristic of bonds within that molecule
- Good for determining structural information like regioisomeric relationships: differentiate isomers
- 4000-650 cm⁻¹ range, 4cm⁻¹ resolution
- Extensive searchable IR transmission libraries
- Sensitivity down to 1 ng
- Limited dynamic range 10³

IR Spectra – Isomers of Ethyltoluene

- Detects analytes with: aromatic substitution, cis-trans isomers, ring junctions & isomers, aliphatic chains, functional group selectivity
- Useful in forensic drug analysis clinical assays, food/flavour/fragrance

The SCD

- Sulfur compounds quantitatively converted to SO₂ in combustion chamber at temperatures >1800°C
- RS + O → SO + Other Products
- Vacuum pulls combustion products into reaction cell where excess ozone added
- SO + $O_3 \rightarrow SO_2 + O_2 + light (300-400 nm)$
- Light passes through optical filter & detected by photomultiplier tube
- Sensitivity: picogram levels
- Linear >10⁴ with equimolar response
- Very sensitive & highly selective, no quenching

H₂ + Column Effluent Dual Plasma SCD

The NCD

 Nitrogen compounds converted to nitric oxide in H₂ and O₂ plasma in combustion tube

- Catalyst used to prevent 2nd N species being destroy potential interferences
- RN + $O_2 \rightarrow NO + CO_2 + H_2O$
- Nitric oxide reacts with ozone
- NO + $O_3 \rightarrow NO_2 + O_2 + light (600-3200 nm)$
- Light passes through optical filter & detected by photomultiplier tube
- NCD also responds to ammonia, hydrazine, cyanide & NO_X
- Sensitivity: picogram levels
- Linear >10⁴ with equimolar response except N₂ and N-N₂ bonds
- Very sensitive & highly selective, no hydrocarbon quenching

H₂ + Column Effluent Dual Plasma NCD

The TEA

- Nitrogen compounds converted to NO in H₂ & O₂ plasma
- R-NH + $O_2 \rightarrow NO^* + CO_2 + H_2O$ $NO^* + O_3 \rightarrow NO_2^* + O_2$ $NO_2^* \rightarrow light (600 nm) in reaction chamber$
- Pyrolysis at 350-500°C for Nitroso (R-NO) & 600-900°C for Nitro (R-NO₂) & 700-825°C for Nitrogen (NH)
- Light passes optical filter & detected by photomultiplier
- Available in nitrogen & nitro/nitroso modes
- Sensitivity: picogram levels
- Linearity 10⁴
- Very sensitive & highly selective

Courtesy of Ellutia

The AED

- Anthias Consulting Ltd
 Bridging the Gap
- Theory: column effluent heated in He-rich plasma chamber, analytes reduced to elemental state & excited
 - → Excited analytes decay & emit light
 - → Light strikes a photosensitive surface knocking loose an electron → Amplified & recorded

Plasma: microwave-induced (MIP), inductively coupled (ICP)

or direct current (DCP)

 Reagent gas: H₂, O₂, N₂ (analyte dependent)

- Sensitivity: low pg/sec
- Applications: VOCs, oil, water, diesel
- Simple, robust, fast response

Can measure ~ 25 elements

Courtesy of chemwiki.ucdavis.edu

GC Detector summary

Anthias Consulting Ltd
Bridging the Gap

Detector Analytes/atoms/bonds Sensitivity Linear range 100 pg C FID C-H bonds 10^{7} Sulphur/Phosphorus/other elements S:pg P:fg S:10³ P:10³ **PFPD** 105-7 PID **VOCs** 25-50 pg 104 **VUV** Functional groups, isomers pg 103 **IRD** Functional groups, isomers ng SCD/NCD 104 Sulphur/Nitrogen pg Nitrogen groups 104 TEA pg 104 AED Heteroatoms & other elements <pg TCD 105 Organic & inorganic <ng Nitrogen/Phosphorus **NPD** 50-500 fg 105 BID 105 Organic low pg 0.1 ppm 102 HID/DID Gases 104 **ECD** <50 fg Electron capturing, halides... **ELCD** Halogens, sulphur, nitrogen 5 ppb **10**³

Summary

- Many GC detectors available
- Consider chemistry of matrix as well as analytes when choosing selective detector
- Consider sensitivity & linear range of detector
- Some GC detectors like VUV & IRD offer another dimension of information for identification

Acknowledgements

- Dr Geraint Morgan, The Open University
- John Damiral, Ol Analytical
- Bryan White, JSB UK
- Andrea McGhee, RSC
- Imran Janmohamed & Richard Stokes, Anthias