
Samples for Analysis

Anthias Consulting Ltd Bridging the Gap

- · A sample is made up of:
 - Analytes = compounds of interest
 - Matrix = other components not interested in
 - Matrix interference = matrix component(s) which interfere with the analysis of analytes
- Most analytical techniques require the sample to be prepared for analysis, which sample prep technique is best depends on:
 - Sample phase: Solid, Liquid or Gas
 - Volatility of analytes & matrix
 - Concentration of analytes
 - Analytical technique to be used

© Anthias 2005-21

www.anthias.co.uk

2 of 40

GC Analytes

Are organic compounds of interest which are:

- Volatile enough to be vapourised & carried by carrier gas through a GC instrument, usually below 400°C
- Do not decompose at temperature required to vaporise sample

Only around 20% of known organic compounds can be analysed by GC!

© Anthias 2005-21 www.anthias.co.uk 3 of 40

3

LC Analytes

Are organic compounds of interest which:

- Are soluble in mobile phase
- Have a lower vapour pressure than sample solvent & mobile phase
- No upper mass limit (within reason!)
- Detectable!
 - Need chromophore for UV-Vis
 - Need to know absorbance & emission spectra for fluorescence & therefore contain a fluorophore
 - Must be ionisable for LC-MS

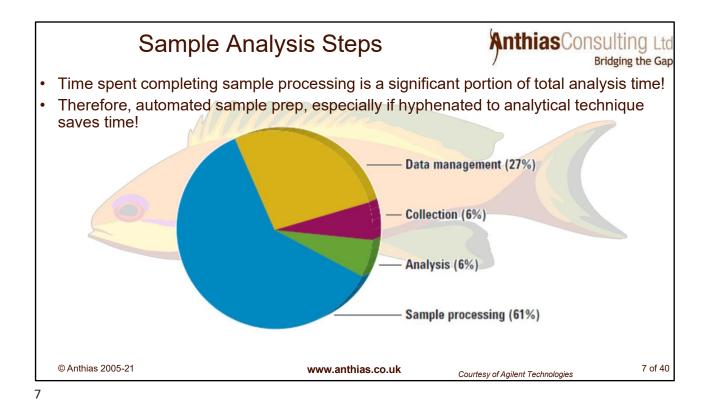
© Anthias 2005-21 **www.anthias.co.uk** 4 of 40

Л

Sample Preparation, Why?

- Sample preparation is key to success
 - Results can only be as good as samples that are prepared for analysis
- Samples for LC analysis must be
 - Soluble in solvent compatible with mobile phase, ideally the same solvent system
 - Not contain particles that can block the system
- Samples for GC analysis must
 - Not exceed volume of inlet liner when injected & heated (i.e. be concentrated enough)
 - Be compatible with stationary phase

© Anthias 2005-21 **www.anthias.co.uk** 5 of 40


5

Sample Preparation, Pros & Cons

- By removing interfering matrix molecules from a sample, chromatography
 & associated method development will be:
 - Easier: less peaks to resolve
 - Quicker: matrix more/less polar or of different volatility than analyte(s) can be selectively removed, reducing run times
 - Cleaner: less cleaning required of GC, LC or MS system
- Care must be taken:
 - Not to lose target analyte molecules
 - Extraction efficiency should be measured & considered
 - Recovery >80% is good but should also be reproducible
 - Not to create target analyte molecules through reactions

© Anthias 2005-21 **www.anthias.co.uk** 6 of 40

Reasons for Sample Preparation

- Sample preparation is used to:
 - Remove particulates
 - De-salt
 - Remove proteins, phospholipids or high molecular weight matrix
 - Switch solvent systems
 - Increase chromatographic column lifetime
 - Concentrate sample
 - Dilute sample
 - lonise or neutralise (buffer)
 - Extract specific target compounds

© Anthias 2005-21 **www.anthias.co.uk** 8 of 40

Introduction of samples

- Samples very rarely directly introduced onto analytical column
- Even liquid injection often needs some type of pre-extraction of analytes from matrix
- Best sampling technique is determined by:
 - Sample phase: gas/liquid/solid or something in-between?
 - Where is sample?
 - Can a portion be moved to lab or must be sampled in-situ (can instrument be taken to it)?
 - Analytes: volatile/semi-volatile/involatile?
 - Possible to automate sampling/extraction technique?

© Anthias 2005-21 **www.anthias.co.uk** 9 of 40

9

Choosing an Automated Sample Prep Technique to Match your Analytes and Matrix

Gas phase samples

© Anthias 2005-21

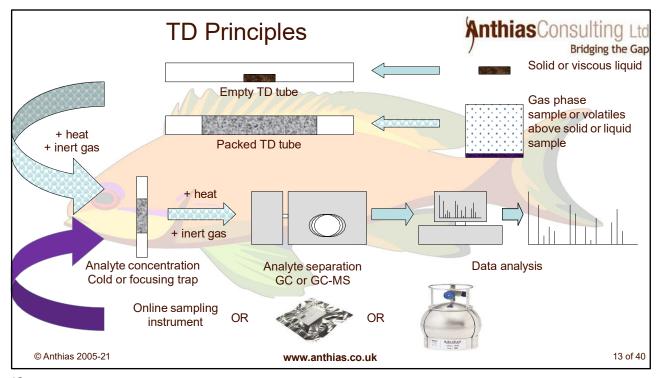
www.anthias.co.uk

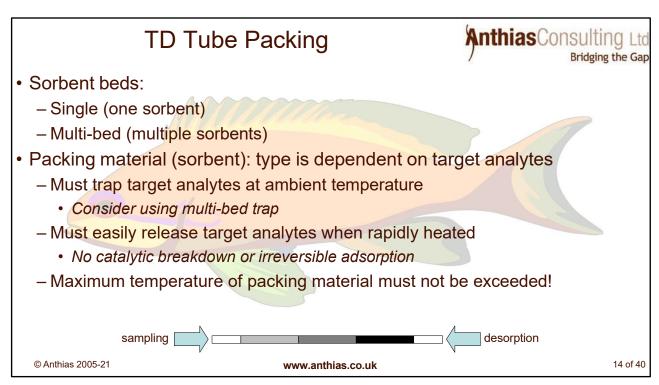
Gas Phase Samples

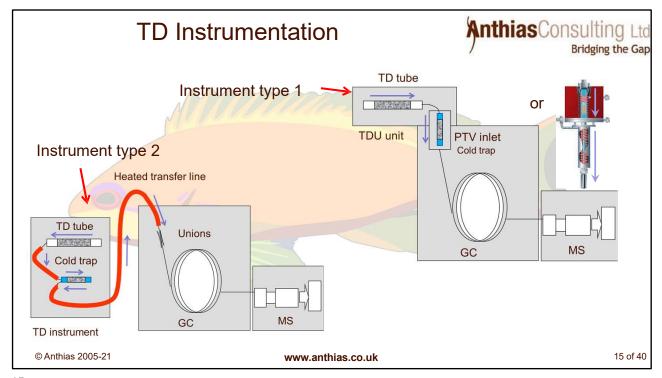
- Usually analysed by GC
- Must be sampled in-situ:
 - e.g. Air, breath from patient, process plant
- Sample can be taken:
 - e.g. Cylinder of industrial gas
 - Canister/bag of sample collected from above
- Analytes: usually volatile
- Techniques available:
 - Thermal desorption (TD)
 - Solid phase micro-extraction (SPME)
 - Stir bar sorptive extraction (SBSE)

© Anthias 2005-21 www.anthias.co.uk

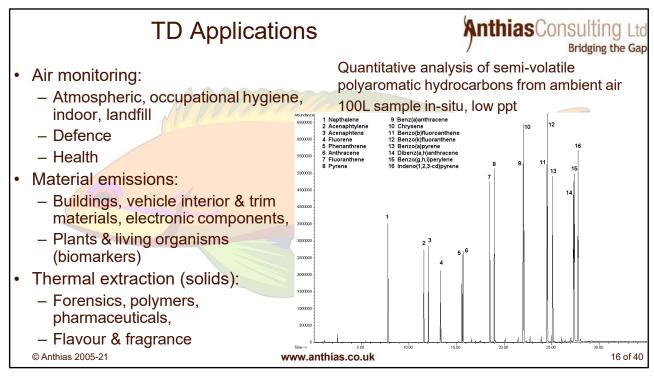
11 of 40

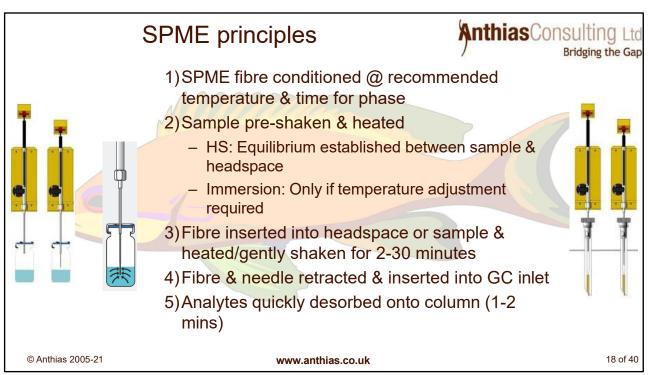

11


Thermal Desorption (TD)



- Definition: thermal means 'heat' & desorption means 'changing from an adsorbed state on a surface, to a gaseous or liquid state'
- Analyte range:
 - C₂ (acetylene) freons → C₄₀, PAHs & phthalates
 - Not good for some inorganic gases, thermally unstable or high MW analytes with b.p. > 525°C
- Sample types:
 - Gas sample or headspace above a fixed or large solid sample
 - → Sampled onto adsorbent in a packed TD tube
 - → Thermal desorption of adsorbent
 - Small solid sample or viscous liquid sample
 - → Placed in empty TD tube
 - → Direct thermal extraction of sample


© Anthias 2005-21 **www.anthias.co.uk** 12 of 40



Solid Phase Micro-Extraction (SPME)

- Developed in early 1990s at University of Waterloo by Professor Pawliszyn's group
- Fibre coated with stationary phase similar to GC column phase:
 - Polymer (liquid) or sorbent (solid)
- Used to extract & concentrate analytes from liquid or gas phase
- Fibre desorbed thermally in GC inlet or by liquid desorption in solvent or HPLC interface
- Fast & simple technique (no solvents)
- Manual or automated
- · Onsite sampling possible if fibres appropriately stored
- · Good for rapid screening & quantitative analysis

© Anthias 2005-21 www.anthias.co.uk 17 of 40

SPME fibres

- 1cm fused silica coated with stationary phase bonded to SS plunger
- Plunger held within needle
 - → Withdrawn to protect fibre when piercing septa, etc.
- Phase type & thickness chosen to match characteristics of analytes (selectivity)
- Amount of analyte adsorbed depends on thickness of phase & partition coefficient of analyte
 - Thick phase: volatile analytes
 - Thin phase: semi-volatile analytes

@ Anthias 2005-21

www.anthias.co.uk

19

SPME phases

19 of 40

- · Select SPME phase to match chemistry of analytes trying to extract:
 - Molecular weight & polarity
 - Consider chemistry of matrix too!
- Small changes in stationary phase polarity = no large selectivity differences
- Addition of sorbent to coating e.g. strongly polar Carbowax PEG onto DVB polymer → increases surface area & improves extraction efficiency of polar molecules
- Adsorption type fibres better for extracting low conc. analytes e.g. carboxen, DVB
- Absorptive fibres have greater capacity & linearity as they use partitioning for the extraction, e.g. carbowax, PDMS, polyacrylate

© Anthias 2005-21 **www.anthias.co.uk** 20 of 40

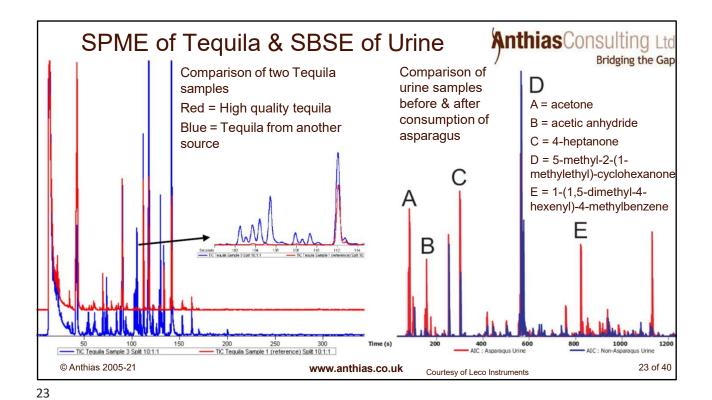
SPME Instrumentation

- Possible to do manual SPME
- Automated systems allow:
 - Sample preparation in tray (ambient temperature)
 - In incubator with heating and/or shaking
 - A derivatisation reagent to be added to fibre prior to extraction step
- Some autosamplers have a multi-fibre exchange
 - Good if analysing many samples
 - Good for method development to try different phases
- Syringe kits allow autosampler to be used for liquid or headspace injections too, or even SPE & liquid-liquid extract too!

© Anthias 2005-21 **www.anthias.co.uk** 21 of 40

21

Stir-Bar Sorptive Extraction (SBSE)



- SBSE developed at Eindhoven University of Technology in late 90s
- Analyte enrichment technique similar to SPME but with 50-250x more PDMS phase → up to 1000x more sensitivity
- Phase is coated onto stir-bar

 → used to stir aqueous samples or can extract from headspace
- Analytes are thermally desorbed
- Basic principles are same as SPME
- · Can be used for quantitation with both external & internal standardisation

© Anthias 2005-21 **www.anthias.co.uk** 22 of 40

Choosing an Automated Sample Prep Technique to Match your Analytes and Matrix

Liquid phase samples

www.anthias.co.uk

© Anthias 2005-21

Liquid Phase Samples

- · Sampled in-situ:
 - e.g. Process & waste streams
- Sample can be taken:
 - e.g. Water, chemical, urine, fuel
- Analytes: volatile to involatile
- Techniques available:
 - Headspace (HS), purge & trap (P&T), solid phase micro-extraction (SPME), stir-bar sorptive extraction (SBSE), solid phase extraction (SPE) or liquidliquid extraction (LLE),
 - Plus thermal desorption (TD) or pyrolysis (Py) (soluble, dispersed or viscous liquids only)

© Anthias 2005-21 www.anthias.co.uk 25 of 40

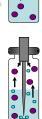
25

Headspace & Purge-and-Trap Analysis

- "The 'headspace' is the gas space in a chromatography vial above the sample.
 Headspace analysis is therefore the analysis of the components present in that gas."
- Sample: anything that fits into vial & releases volatile analytes
 - Liquid or viscous liquid
 - Solid analysed directly or after crushing (HS only)
 - Solid mixed/dissolved in a liquid
- Analytes: volatile analytes which are released from sample, usually after applying some heat
 - How much heat can be applied depends on
 - Solvent (if any) boiling point
 - Maximum temperature of instrument & vial
 - In thermal desorption region <350°C where C-C bonds not broken

www.anthias.co.uk

26 of 40


HS and P&T

 Static headspace: sample heated/shaken in sealed vial & portion of gas phase injected

- Dynamic headspace: sample swept with gas & analytes trapped on sorbent trap, thermally desorbed transferring analytes to GC
- Purge & Trap: gas bubbled through sample & analytes trapped on sorbent trap, thermally desorbed transferring analytes to GC
- Sensitivity: P&T > DynamicHS > StaticHS

© Anthias 2005-21

www.anthias.co.uk

27

Partition Coefficient (K)

- Ratio of analyte in headspace (C_g) to analyte in sample (C_s)
- If K is large (>1) analytes prefer sample → will NOT get a good recovery
- If K is small (<1) analytes prefer headspace → will get a good recovery
- Lowering K → increases concentration in headspace → improves detection limits
- K can be lowered by:
 - 1. Raising equilibration temperature
 - 2. Changing composition of sample to push analytes into headspace
 - Adding salt, adjusting pH, adding co-solvent, derivatisation
 - 3. Changing phase ratio

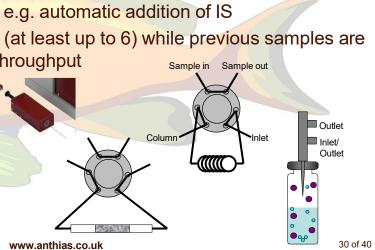
© Anthias 2005-21 **www.anthias.co.uk** 28 of 40

Typical Partition Coefficients

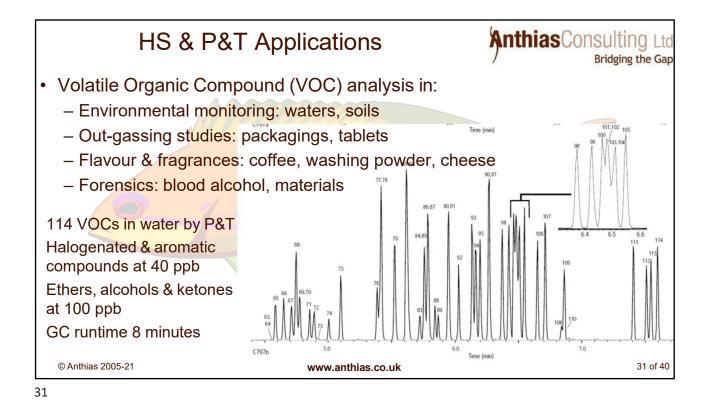
Analyte	K value	Analyte	K value
Cyclohexane	0.077	Dichloromethane	5.65
n-Hexane	0.14	Ethyl acetate	62.4
Tetrachloroethylene	1.48	Methylethyl ketone (MEK)	139.5
1,1,1-Trichloromethane	1.65	n-Butanol	647
o-Xylen <mark>e</mark>	2.44	Isopropanol	825
Toluene	2.82	Ethanol	1355
Benzene	2.90	Methanol	1670

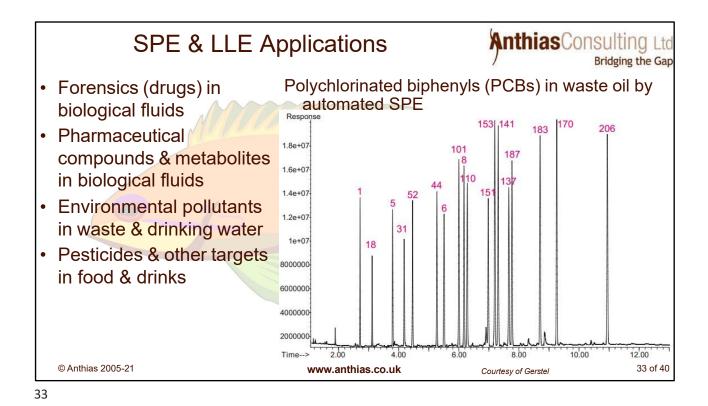
Typical partition coefficients in water at 40°C

- Raising sample temperature reduces solubility
- At 80°C ethanol has K = 328


© Anthias 2005-21 29 of 40 www.anthias.co.uk

29


HS & P&T Instrumentation


- · Most instrumentation can retrofit to GC or GC-MS with a standard split/splitless inlet
- Can have added functionality e.g. automatic addition of IS
- Usually can prepare samples (at least up to 6) while previous samples are analysed increasing sample throughput
- HS has three main types:
 - Gas-tight syringe
 - Balanced pressure system
 - Pressure loop system

© Anthias 2005-21

Anthias Consulting Ltd SPE & LLE Bridging the Gap Samples: liquid (solid/viscous - dissolve/dilute) Analytes: volatile to involatile Purpose: Extract target analytes Remove interfering matrix components & protect analytical system from contaminants - Selectively isolate & concentrate analytes: 100-5000x enrichment - Change solvent: e.g. water samples cannot be injected into GC Solid phase extraction (SPE): select a sorbent to trap analytes (or matrix) then elute using a different solvent Liquid-liquid extraction (LLE): a non-miscible solvent used, efficiency improved by increasing temperature, matrix modification © Anthias 2005-21 32 of 40 www.anthias.co.uk

Choosing an Automated Sample Prep Technique to Match your Analytes and Matrix

Solid phase samples

@ Anthias 2005-21

Anthias Consulting Ltd Bridging the Gap

Solid Samples

- Sampled in-situ:
 - e.g. Building materials, car interiors, plants
- Sample can be taken:
 - e.g. Soil, drugs, washing powder, meteorite, food
- Analytes: volatile to involatile
- Techniques available:
 - Headspace (HS), thermal desorption (TD) or pyrolysis (Py)
 - Plus purge & trap (P&T), solid phase micro-extraction (SPME), stir-bar sorptive extraction (SBSE), solid phase extraction (SPE) or liquid-liquid extraction (LLE) after mixing/dissolving in a liquid

@ Anthias 2005-21 35 of 40 www.anthias.co.uk

35

Thermal Extraction Techniques

- Techniques which use heat to directly extract analytes from sample then are swept onto GC column include:
 - Headspace analysis (volatiles only)
 - Thermal desorption (up to around 350°C): no chemical bonds broken
 - Analytical pyrolysis (above 350°C, some pyrolysers heat in excess of 1400°C!): breaks chemical bonds

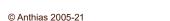
© Anthias 2005-21 36 of 40 www.anthias.co.uk

Analytical Pyrolysis

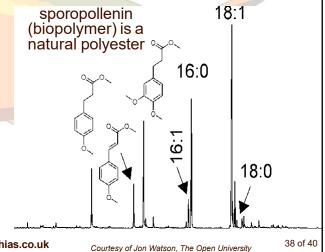
- "Pyrolysis is the chemical decomposition of organic materials by heating in an inert atmosphere"
- Samples: solid or dispersed (solvent must be evaporated first)
- Analytes: non-volatile or trapped
- Sample is heated to high temperatures (500-1400°C) where bonds are broken
- Small amount is placed on filament or in quartz tube & placed in pyrolyser
- Pyrolysis takes place in an inert atmosphere (carrier gas)
- A pyrogram is produced which is a fingerprint of the sample

@ Anthias 2005-21

www.anthias.co.uk


37 of 40

37


Pyrolysis Applications

Anthias Consulting Ltd

- Pyrolysis can used for analysis of natural & artificial macromolecules
- Natural
 - PVC, acrylics, varnishes, etc.
 - Lignin, cellulose, chitin, etc.
- Food, flavour & fragrance
 - Components of biopolymers
- Chemical
 - Paints, coatings, plastics
- Kinetic studies of thermal degradation products
- Product quality control

Automated Thermochemolysis-GC-MS of solvent extracted Lycopodium spores

www.anthias.co.uk

Summary of sample prep techniques

Technique	Sample phase	Analytes	In-situ?
TD	G & S (L)	Volatiles & semi-volatiles	Yes
Pyrolysis	S (G, L)	Volatiles-involatiles, bound & free	No
HS	L&S	Volatiles	No
P&T	L(S)	Volatiles+	No
SPE	L(S)	All	No
SPME	G & L (S)	Volatiles & semi-volatiles	Yes
SBSE	G & L (S)	Volatiles & semi-volatiles	Yes
LLE	L&S	All	No

Key message: understand the chemistry of your analytes & matrix: volatility, polarity, functional groups => match technique & consumables required!

© Anthias 2005-21 **www.anthias.co.uk** 39 of 40

39

www.anthias.co.uk

© Anthias 2005-21